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Abstract-The hydrodynamic and thermal behavior of a thin liquid film flowing over a solid horizontal 
surface is analyzed for both plane and radially spreading flows. The situations where the gravitational 
force is completely absent and where it is significant are analyzed separately and their practical relevance 
to a micro-gravity environment is discussed. In the presence of gravity, in addition to Reynolds number, 
the Froude number of the film is found to be an important parameter that determines the supercritical and 
subcritical flow regimes and any associated hydraulic jump. A closed-form solution is possible under some 
flow situations. whereas others require numerical integration of ordinary differential equations. The 
approximate analytical results are found to compare well with the available two-dimensional numerical 

solutions. 

1. INTRODUCTION 

MOST EARLIER studies [l-5] on thin film flows are 

related to the falling film where the motion of the film 
is driven by the gravitational body force acting in the 
direction of the flow. These studies covered different 
areas of application including condensation, evap- 
oration, gas absorption and other chemical processes. 
With the advancement of technology, however, the 
thin film flow is also becoming common on horizontal 
surfaces where the gravitational body force acts per- 
pendicular to the surface or where gravity is entirely 

absent. In these situations, the film may be generated 
either by impingement of a jet on a solid wall or by 
discharge of fluid through a slot from a pressurized 

container. These situations may occur in the Space 
Shuttle for inflow to a propellant tank or in the 
absorber unit of a space-based heat pump absorption 
system. The understanding of such flows in a micro- 
gravity environment is essential for the optimal design 
of fluid flow and heat exchange processes in a space 
vehicle. 

The inviscid flow of a liquid jet impinging on a solid 
wall is a classical hydrodynamics problem which is 

available in textbooks [6]. It is concerned with irro- 
tational, incompressible and inviscid flow, in which the 
effects of gravity and surface tension are neglected. 
One of the major attractions of this type of approach 
is that it can be handled using complex potential 
theory and therefore can be treated analytically. 

In nature, however, viscous effects become impor- 
tant, particularly when the thickness of the liquid 
layer becomes small. Also, gravity cannot be neglected 
entirely in most situations. Watson [7] analyzed the 
fluid mechanics of thin films produced by the impinge- 
ment of a liquid jet on a flat horizontal surface under 

the action of gravity. By using the boundary layer 
approximations of the governing transport equations. 
analytical solutions using a similarity transformation 
along with the Pohlhausen integral method were 
derived. The analysis covered the regions where the 
boundary layer thickness is less than the film height 
and where the film is totally engulfed by the boundary 
layer. The possibility of a hydraulic jump in such a 
flow was also anticipated. However, the analysis was 
applicable only to the supercritical flow before the 
jump. The height of the jump was predicted for any 

given location of the jump. The heat transfer counter- 
part of the impinging jet problem was considered by 
Chaudhury [8]. The energy equation was solved in 
closed form including the effects of viscous dissipation 
by approximating the temperature profile with a fourth- 
order polynomial. Nusselt numbers for different 
Prandtl numbers were presented. 

The impingement of a liquid jet in a gravity-free 
environment was presented by Labus and Dewitt 
[9]. They included the effects of surface tension, but 
entirely neglected the viscous forces. From a scaling 
analysis, it was shown that for a large jet Reynolds 
number, the flow can be approximated to be inviscid. 
Numerical solutions of the governing transport equa- 
tions were obtained and compared with experimental 
measurements. Three distinct flow patterns of the jet 
were obtained which were classified in accordance 
with relative importance of inertia and surface 
tension. 

In the studies mentioned above, the investigators 
considered either inviscid flow or viscous supercritical 
flow up to the location of the jump. The fluid flow in 
the vicinity of the jump or in the subcritical region 
following the jump is also important from an engin- 
eering point of view. In fact. under a moderate gravi- 

103 



NOMENCLATURE 

A tlow parameter, defined by equation f 14) I%’ average velocity along the plate [m s ‘1 

(‘I friction coeficicnt, z,/(O.SJ~W’ b ?’ coordinate normal to the plate 
I;i Froude number. I@/,,/(&) I coordinate along the plate. 

(1 acceleration due to gravity fm s- ‘1 
II heat transfer coefficient [W m‘ ’ K ‘1 Greek symbols 
h. thermal conductivity [W m ’ K ‘1 thermal diffusivity [m’ s ‘1 
K coordinate parameter: 0, for plane flow; ; flow parameter (defined by equation 

I, for radial flow (54)) 
L length of the plate [m] 6 film thickness [m] 
Nu” Nusselt number in terms of film height, (‘jK thickness of momentum boundary layer 

iliiili [ml 
P static pressure [Pa] ‘I dimensionless coordinate normal to the 

Y heat flux [W m-“1 plate. y/S 

e volumetric flow rate (per unit width for fl dynamic viscosity [N s m .” ‘1 
plane flow) [m’ s- ‘1 1’ kinematic viscosity [m’ s ‘. ‘1 

I radial coordinate P density [kg m “1 

R dimensionless radius. defined by 7 shear stress [N rn- ‘1. 
equations (45) and (50) 

RI dimensionless radius, defined by Subscripts 
equations (32) and (16) b mixed mean (bulk) condition 

.& Reynolds number, Ct;‘i/~ e condition on the free surface 
t time [s] in condition at entrance 
T temp~~dture [I<] out condition at exit 
L component of velocity normal to the sat saturation condition 

plate [m s ‘] W condition on solid wall. 
V velocity vector [m s ‘1 
1%’ component of velocity along the plate Superscript 

[m s- ‘1 * critical condition in the flow. 

tationat field, a jump will always be present in a 
horizontal rotating absorber unit during start-up and 
operation at small rates of rotation and small Row 
rates. Moreover, all of the studies mentioned above 
are concerned with a thin film formed by impingement 
of a liquid jet. The driving mechanism of these flows 
are flow rate and jet diameter which are characterized 
by jet Reynolds number. So, the findings in these 
studies cannot be applied readily to a situation where 
the film is formed by discharge from a pressurized 
container. This situation was considered in recent 
studies [ 1 Cl 31. A systematic numerical study of two- 
dimensional fluid flow and heat transfer in a thin 
liquid film in both pIane and radially spreading flows 
was performed. The studies covered both zero and 
normal gravity eilvironments. fn the absence of 
gravity, no jump was found and the flow remained 
supercritical in the entire domain. In the presence of 
gravity. a jump was found under some flow 
collditions. In all of these studies. the flow field was 
computed numerically using a boundary-fitted coor- 
dinate system where the irregular free surface of the 
film was taken as one of the boundaries of the com- 
putation domain. The inertial, viscous and pressure 
forces were identified to be dominant and the surface 
tension was found to be negligible in most regions. 

The computational methodology presented in refs. 
[IO, 121 is termed the “pressure optimization method’ 
where the shape of the free surface was represented 
by an algebraic equation with two or more arbitrary 
constants. The constants were optimized using an 
exhaustive search which minimized the difference 
between the computed free surface and ambient 
pressures. The method was found to be robust and 
was extremely satisfactory for zero-gravity flows. 
However. when a jump was present in the com- 
putation domain, the pressure optimization method 
was unable to compute the jump as a single-domain 
problem. The subcritical and supercritical flows were 
computed separately and were matched at the jump 
interface preserving the conservation of mass. 
momentum and energy. 

The two-dimensional numerical method presented 
in ref. [ 1 I ] is termed ‘porous wall method’. In this 
method, the free surface was assumed to be a per- 
meable wall where fluid particles could cross this 
boundary depending on the difference between the 
fluid and ambient pressures. The shape of the surface 
was improved by successive iterations until the free 
surface conformed to a streamline where no pen- 
etration occurred. This method proved to be suc- 
cessful in handling the regions before and after the 
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jump as a single-domain problem. The details of the Here we have also assumed that heat generation 
flow structure in the vicinity of the jump were pre- due to viscous dissipation and pressure work are neg- 
sented along with values of the skin friction and heat ligible. The velocity vector V can be resolved into 
transfer coefficients. components as 

Even though the complete numerical solution for 
the flow field and heat transfer coefficient [l&12] are 
available, the need for a simple, systematic, analytical 
method to describe the flow is inevitable. The numeri- 
cal results are limited to the flow parameters used for 
the computation, and cannot be extended in general. 
Moreover, an analytical expression is easier to use 
and implement in addition to the understanding of 
the limiting behavior of the flow. The present work is 
intended to analyze both zero-gravity flows and the 
flows where gravity is significant. The application of 
these results in a micro-gravity situation will be exam- 
ined. Unlike previous analytical studies, it will cover 
both supercritical and subcritical regions and the jump 
connecting the two domains. In addition to analyzing 
the flow field. the heat transfer will be studied. 

V = wk+cj. 

The vectorial representation used in equations (l)-(3) 
is easier to handle since it can be readily transformed 
to Cartesian or cylindrical components as needed. The 
boundary conditions in component form are given by 

at_r=O: 

I_’ = ),’ =i 0 

T= T,, for isothermal wall 

+i$4”, for constant flux wall (4) 

aty=&: 

d& v aw 
z=;q P=Per z= 0 

2. EQUATIONS OF MOTION 

The schematic of the problem under consideration 
is shown in Fig. 1. A thin liquid film is flowing adjacent 
to a solid heated wall. Two classes of flows are 
considered here. 

(a) Plane flow: where the film moves in a two- 
dimensional fashion along a plane horizontal wall. 

(b) Axisymmetric radial flow: where the liquid is 
introduced at the center of a circular horizontal plate 
and spreads out radially. 

The z(r)-axis is directed along the longitudinal (rad- 
ial) direction, and the y-axis is directed normal to the 
plate. The velocity components in these two directions 
are wand v, respectively. The height of the free surface 
from the solid wall is denoted by S which varies with 
the longitudinal (radial) location of the plate. 

The equations governing the conservation of mass, 
momentum and energy for an incompressible con- 
stant-pro~rty Aow are given by 

DV 
- = - ;v~+rV2V+g 

Dt 

DT 
- = c?V2T. 
Dr 

FIG. 1. Schematic of the physical problem. 

for evaporation 

for adiabatic condition (5) 

at i-’ = 0 or r = r,, : 

It’ = W,“. T= I”,, (6) 

at z = L or r = r,,, : 

ap ar 
ay= -pg. Y&= 0 

i-= t 

an, o 
a2 

for zero gravity 

i Fr = Fro,,, for non-zero gravity. 

On the free surface, both streamline and stress-free 
conditions have to be satisfied. The balance of normal 
stresses, in general, relate fluid pressure to the ambient 
pressure via surface tension and other stresses. From 
a scaling analysis, it can be shown that [I I], for a 
reasonably large Weber number and flow rate that is 
typical for these flows, these stress terms are found to 
be an order of magnitude lower than the pressure. So, 
the surface tension can be assumed to be negligible in 
most regions of the flow leading to the p = pe con- 
dition on the free surface. 

Both plane and radial flows described above will be 
solved for zero and normal gravity situations. In the 
following two sections, we will analyze the flow using 
uniform and parabolic velocity distributions, respec- 
tively. The former is more common in fluid flow litera- 
ture concerning a hydraulic jump or shock wave and 
will be carried out in detail. The latter section will 
improve on the analysis by using a parabolic velocity 
distribution across the film, which is more appropriate 
for laminar thin film flow. 



3. ANALYSIS OF FLOW USING ONE- 

DIMENSIONAL UNIFORM VELOCITY 

We first consider the situation where the velocity 

variation across the thickness of the film is neglected, 
and the film is assumed to propagate downstream with 
its uniform average velocity. Let W be the average 
velocity of the film in the longitudinal (radial) direc- 
tion of the plate and Q be the volumetric flow rate. In 
the case of plane flow, Q is the volume flow rate per 
unit width. The continuity equation C 1) can be written 
as 

where 

Q = (2~r)~6 W (8) 

K= 
1 

0. for plane system 

1, for radial system. 

Integrating equation (2) across the thickness of the 
film, expressing the resistance from the solid wall in 
terms of friction coefficient and substituting equation 
(8) results in 

(9) 

This momentum equation must be solved along 
with equation (8) to determine the flow field, and will 
be carried out in the following subsections. 

3.1. Flo,t under zero gravit), 

For a steady flow under zero gravity, the governing 
equations (8) and (9) reduce to 

Q = (2xr)“S W = constant (10) 
7 

w!d;= +I!!!. (11) 

Eliminating 6 from equations (10) and (11) gives 

W-‘dW= - 2’;, (2nr) dr 

Integrating this equation assuming a constant cr 
and substituting the conditions at one location of the 

flow (i.e. at r = rln, W = W,, and 6 = S,,) yields the 
solution in the form 

* Cl r 

Solving for 6 results in the following relation 

where 

(12) 

(13) 

(14) 

From equation (13) we may express the distribution 
of film height for plane and radial flows. For plane 
llow (K = 0). the equation simplifies to 

(15) 

This indicates that for a constant friction coefficient 
the film height increases linearly with distance. This 
increase in film height is because of the decrease in 
flow velocity due to the resistance from the wall. We 
may also notice that for inviscid flow when no resis- 
tance is exerted by the solid wall, the film height 
remains the same at all downstream locations begin- 
ning from the entrance. 

In real flow situations, however. the friction 

coefficient varies along the plate. Usually, near the 
entrance the friction coefficient is greater due to the 

rapid changes in the velocity profile as the boundary 
layer develops beginning from the entrance plane. A 
good estimate of the friction coeflicient can be made 
using the Blasius solution [ 131 for forced convective 
boundary layer adjacent to a plate. This results in 

(16a) 

and 

0.664 
(16b) 

However, unlike any other external flow, in a thin film 
the boundary layer thickness is frequently of the order 
of the film height. So. after some distance 
downstream, the viscous effects propagate all the way 
to the free surface. Then cr can be better estimated 
from the equation presented in a later section of this 
paper (equation (46)). The location where one should 
switch over from one formulation to the other may 
be estimated from the solution of the boundary layer 
thickness for forced convection. The thickness of the 
momentum boundary layer is given by 

6, = 5.0 
/K JL > w , for plane flow 

and 

6, = S.O/(~~$“). for radial Bow. 

As shown by Thomas et uf. [ 141, the two friction factor 
estimates yield the same value at 6 = 1.81~5~. So. for 
continuity, one may use equation ( 16) for S/S, > 1.8 1 
and equation (46) for S/S, < 1.81. 

The one-dimensional analytical solution with the 
friction coefficient described above has been com- 
pared with the numerical solution of ref. [lo] in Fig. 
2 for Re = 12.5, L = 0.03 m. ii,, = 0.000595 m and 
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FIG. 2. Film height for plane and radial Rows under zero 
gravity. 

v = 7.4 x lo-6 m2 s- I for plane flow. Similar to the 
analytical solution, a uniform inlet velocity has been 
assumed for the numerical solution. The predicted 
film height distribution is found to be somewhat 
higher than the two-dimensional numerical solution. 
A test run with the friction coefficient reported in 
ref. [lo] yielded a solution almost coincident with the 
numerica film height. So, the discrepancy is primarily 
due to approximations inherent with the estimation 
of the friction coefficient. The Blasius solution is per- 
fectly valid for boundary layer flow where the free 
stream extends through a large distance and no free 
surface is present. However, the comparison is reason- 
able considering the approximations inherent in the 
simple analytical formulation. 

A plot of equation (13) for radial flow under zero 
gravity is presented in Fig. 3 for different values of A. 
For A = 0.0, which corresponds to inviscid flow, the 
film height monotonically decreases with radial dis- 
tance. This is quite expected since, in the absence of 
any friction, the velocity of fluid particles will remain 
constant. Therefore, the film height has to decrease 
with radius as more and more area becomes available 
to the flow. In this plot we also notice that when 
friction is present (A > 0). the film height may 
increase or decrease depending on the value of A and 

FIG. 3. Analytical film height for radial flow under zero 
gravity. 

the radial location. Also, for a given radial location 
the value of the film height is more for a larger value 
of A, since A quantifies the frictional resistance com- 
pared to the inertial forces. For A = 0.2 and 0.4, the 
film height decreases first, attains a minimum and 
then increases further downstream. The location for 
minimum S can be determined by differentiating equa- 
tion (13) which gives 

s 0 s, In,” 

= 2,/A &l -A). 

From equation (17) we find that a minimum exists if 
A < l/2. Otherwise, the film height increases con- 
tinuously from the entrance as seen in plots cor- 
responding to A > 0.5. At A = 1.0, the film height 
increases linearly with radius. 

The analytical solution for a particular case of 
Rei, = 404, 6,” = 0.005 m, rin = 0.05 m, r,,,, = 0.2 m 
andv = 7.4x IO-“m2s”isshowninFig.2whereitis 
compared to the two-dimensional numerical solution 
given in ref. [lo]. Here, we have aiso used the friction 
coefficient estimated by equations (16) and (46). The 
results are very close except for the fact that the ana- 
lytical solution shows a minimum in the flow domain 
The minimum is indeed present as verified from the 
value of A. The numerical sotution could not accom- 
modate this behavior since a continuous hyperbolic 
curve was assumed to represent the free surface. 

3.2. Flow in the presence of grauity 
When the gravitational body force is significant 

compared to other existing forces, its effect should be 
included in the analysis. Unlike a regular forced or 
natural convection flow in outer space, the effect of 
gravity, even small, may be significant in a thin film 
flow since two potential flow regimes, namely super- 
critical and subcritical may be encountered. These 
regimes are characterized by the Froude number. The 
transition of the flow from supercritical to subcritical 
is analogous to the transition from supersonic to sub- 
sonic flow in gas dynamics, where the Mach number 
determines which regime is present. The analysis pre- 
sented below uses the methodology commonly fol- 
lowed in the analysis of high speed flow with friction 
(i.e. Fanno flow). The application of these ideas to a 
thin fifm flow is entirely new and it enabled us to 
combine both flow regimes (supercritical and sub- 
critical) in a single analysis which was not possible 
by previous investigators. Most previous analytical 
studies assumed the film height to remain constant in 
the subcritical region. Expressing equations (8) and 
(9) in terms of the Froude number results in 

Q = (2nr)” & Fr 6”” (19) 

$[s(1+~)]= -5,C (20) 
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These equations will be solved for plane and radial 
flows in the following subsections. 

3.2.1. Plane frow. For plane flow K = 0. so equa- 

tions (19) and (20) can be combined by eliminating 
the film height and nondimensionalized assuming cf 
to be locally uniform to give the equation 

where 

Integration of equation (21) gives 

++-“‘= -Rl+c. 

To evaluate the integration constant, the Froude 
number must be specified at one location in the flow. 

Upon examining equation (21) we notice that the 
equation is singular at Fr = 1, so a critical flow situ- 
ation is present at that location. This is analogous to 
a Mach number of unity in a compressible flow. Let 
this critical location be denoted by Rl*. Then the 
solution can be written as 

RI--RI*= -;+fF,-+~~-*:3. (23) 

Equation (23) is a double-valued function as shown 
(in circles) in Fig. 4. The two branches of the function 
represent subcritical or supercritical flows where the 
Froude number is less than or greater than unity. 
respectively. 

Since two solutions exist at any location, the possi- 
bility of a sudden jump from supercritical to sub- 
critical flow exists. The opposite is not true since that 
would violate the second law of thermodynamics. The 
height of the film before and after the jump can be 
related by the conservation of mass and momentum 
across the jump. This is given by 

62 1 -=j[J(1+8Fr;?)-l] 
6, 

6 

-o.io -0.k -o.bo -0115 -0.10 -0.b5 o.bo 
RI-RI’ 

FIG. 4. Analytical solution for plane and radial flows over a 
plate in the presence of gravity (uniform velocity). 

where subscript I indicates conditions before the jump 

and subscript 2 indicates conditions after the jump. 
In Fig. 4, it can be observed that both subcritical 

and supercritical flows move towards the critical con- 
dition. In the supercritical regime. the Froude number 
decreases downstream. whereas in the subcritical 
regime it increases with distance. Since the Froude 

number is inversely related to the film height, the 
film height is expected to increase downstream in the 
supercritical region and decrease downstream in the 
subcritical region. A flow starting with Fr < I will 

follow the subcritical curve all the way to the exit. 
However, a flow starting with Fr > 1 may follow the 
supercritical curve all the way to the exit or may 

encounter a jump and transform to subcritical flow 
inside the region under consideration. The location of 

the jump is determined by the downstream condition 
of the fow. 

3.2.2. Asisymmetric radial jlow. For radial flow. 

K = 1. equations (16) and (17) may be transformed 
into the following form : 

(25) 

where 

Analogous to plane flow, here the radial distance has 
been nondimensionalized using the local Reynolds 
number and friction coefficient. The variation of fric- 

tion coefficient with radial distance has been assumed 
to be negligible. A closed-form solution of equation 
(25) is not possible, so a numerical integration was 
performed using the Euler method. It can be noticed 

that the equation is singular at Fr = 1. Therefore, 
the critical condition cannot be directly applied as a 
boundary condition in the numerical solution. To 
avoid this singularity, the equation can be expanded 
around the singular point and the solution can be 
found at a short distance from the singular point from 
the lowest-order expansion. The numerical inte- 
gration then can be carried out beginning from a 
short distance away from the singular point, where the 
solution is already known. The solution is shown in 
Fig. 4. 

It should be noted that the critical radius, Rl*, 
appears as a parameter. For a given flow rate and inlet 
Froude number, the value of Rl * depends on the inlet 
radius. A large Rl* indicates that the flow starts up 
at a larger radial distance. where the effect of curvature 
is smaller. This is quite evident from the plot since the 
result for RI* = 100 coincides with the solution for 
the plane flow. The double-valued nature of the solu- 
tion is also present in radial flow which also indicates 
the possibility of a hydraulic jump. The film height 
before and after the radial jump can be related by the 
same equation as for plane flow (equation (24)). 
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3.3. Characteristic behavior of theflow 
Since the equations of transport for the free surface 

flow of a thin liquid film are somewhat similar to those 
for one-dimensional compressible flow, it may be use- 
ful to analyze the characteristic behavior of the flow. 

The conservation equations in the time-dependent 
form can be written as 

where 

6W 

6 w’+@ ( j; 2 

H= 
0 I i -LIP 

where r, is the surface shear stress. These are two 
first-order partial differential equations in t and r with 
two dependent variables, 6 and W. 

These two equations may be linearized and written 
in the following characteristic form : 

where 

R,+CR, = S 

w+Jtm g 
1 

R= 
W-&5)$ 

= Riemann invariants 

I 

It can be seen that the first invariant always propa- 
gates downstream (i.e. C > 0). The second invariant, 
however, propagates downstream for supercritical 
flow (Ei- = W,J(gS,) > 1) and propagates upstream 
for subcritical flow (Fr < I). This implies that both 
W and 6 must be prescribed upstream for solving 
supercritical flows while only one is prescribed 
upstream and one downstream for solving subcritical 
flows. 

3.4. ~~Flication of results to micro-gravity 
The zero-gravity thin film Sow considered here can 

be attained only in a complete absence of the gravi- 
tational body force. However, in orbit the gravity is 
very small, but not precisely zero. Therefore, the range 
of applicability of the results needs to be investigated. 
Looking at plane flow results under zero gravity we 
notice that 

6 = ; z+6,,. 0 
This suggests a monotonic increase in the film height 

so long as cr remains positive. The flow decelerates due 
to friction and consequently the film height increases. 
Since the major driving mechanism for this flow is 
inertia, a film introduced with a finite velocity becomes 
very slow after traveling a certain distance. 

When investigating the expression for the Froude 
number, it can be noticed that even for a very small 
gravity force, where the inlet Froude number tends to 
infinity, the Froude number may become of the order 
of unity after some distance, since both the decel- 
eration of flow and the increase of film height con- 
tribute to reducing the Froude number. The situation 
here is analogous to hypersonic flow, which in the 
presence of friction rapidly ceases to be hypersonic 
after traveling some distance. Therefore, in a micro- 
gravity situation, the order of magnitude of the 
local Froude number is very important. When the 
Froude number is extremely large. like near the 
entrance, the zero gravity results may be applicable. 
However, away from the entrance, when the velocity 
(W) becomes small and consequently Froude number 
(W/,/(gS)) becomes finite, one may resort to the nor- 
mal gravity results presented here. 

4. ANALYSIS OF FLOW AND HEAT 

TRANSFER USING PARABOLIC VELOCITY 

DISTRIBUTION 

The one-dimensionai analysis presented in the pre- 
vious section revealed many interesting features of the 
flow. However, the velocity profile in reality is two- 
dimensional in nature because of the no-slip condition 
at the solid wall. As demonstrated in ref. [IO], the 
velocity profile is approximately parabolic in nature 
in most regions of the flow. The temperature profile 
may also become parabolic after the thermal bound- 
ary layer develops. 

We assume the velocity component, w, and tem- 
perature, T, to have the following general form where 
the boundary condition at the solid wall and free 
surface are satisfied : 

!!+ I-f ( > (27) 

T 
- = l+Bq+Cq2 
T, 

(28) 

where I is the dimensionless coordinate across the 
thickness of the film. The constants B and C will be 
evaluated later in this section for different thermal 
conditions considered here. 

Once the velocity and temperature profiles are fixed, 
the other flow quantities can be readily calculated and 
are given as foilows : 

3fiw r,=--- 
6 (29) 

kBT, 
9w = - ------ s (30) 
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k7, 
yc = ---ii (B+?c) (31) 

r, = i-,(1 +B+C) (37) 

(33) 

In a thin fi!m flow, the velocity across the thickness 

of the film is much smaller than the velocity along the 
plate. Scaling governing equations (l)-(3) using the 
condition L’ CC M’ gives 

(36) 

(37) 

Here K = 0 indicates plane flow and K = 1 denotes 

radial flow. Integrating equation (36) we get 

P =P,+P,d6-J’) (38) 

where pe is the pressure at the edge of the free surface. 
This indicates that the pressure across the thickness of 
the film is hydrostatic in nature. Also, at zero gravity, 
p = p,. In the external flow over a flat surface, the 
ambient pressure usually remains constant. So, in a 
gravity-free environment, the static pressure is 
expected to remain constant everywhere in the flow 
field. 

4.1. Planeflow under zero graciQ 
For plane flow under zero gravity equations (34) 

and (35) can be integrated from 0 to ii using the 
velocity profile given in equation (27) and the no-slip 
condition at the solid wall and zero-shear condition at 
the free surface. After using the definition of Reynolds 
number, it results in the relationship 

d6 2.5 

d= Re’ 

Integrating this equation, one obtains 

(39) 

(40) 

For plane flow. the Reynolds number remains con- 
stant. Therefore, the film height increases linearly 
beginning from the entrance location. We also notice 
that in the limiting case of Re + co, 6 = 6, everywhere 
in the flow field. This is quite expected since in an 
inviscid plane flow, the film height remains constant. 

Figure 2 shows a comparison of this solution with 
previous numerical results of ref. [lo]. The analytical 
solution tends to predict a somewhat higher film 
height than the numerical solution, but lower than the 

solution predicted by assuming a uniform onc- 
dimensional velocity distribution. The assumption of 
a parabolic velocity profile, even though not exact 
everywhere in the flow field, produces a reasonable 
estimate of the film height distribution. 

4.2. Radial /low under zero grurit? 
For radial flow under zero gravity, the integrated 

equation for the conservation of momentum can be 
written as 

d6 2.5 (5 

dr Re r 
(41) 

Analogous to the plane flow case, we have used the 
continuity equation, the boundary conditions at the 

solid wall and free surface and the definition of Reyn- 
olds number to arrive at this relationship. Note that 
this equation reduces to the plane flow equation as 
r --) rm. We can also observe that dfi/dr can be positive 
or negative. So, the film height may increase or 
decrease in the case of radial flow, in contrast to 
plane flow, where a linear increase is encountered. The 
frictional resistance at the solid wall reduces the flow 

velocity and consequently tends to increase the height. 
However, at the same time, the flow is spreading radi- 
ally with more area available for the flow as the radius 
increases. This same behavior was seen in the dis- 
cussion of one-dimensional analysis (Fig. 3). where 
the parameter ‘A’ determined the variation of film 
height downstream from the entrance. ‘A’ is a function 
of inlet Reynolds number along with inlet height and 
radius. Note also that the Reynolds number does not 
remain constant in radial flows and changes with 
location. 

Integrating equation (4 1) gives 

The location of the minimum film height may be 
calculated by differentiating equation (42) with 
respect to r. This results in 

(4 for mIn ,; = rIn 5 >I 
I 1 

6Rei, S,, ’ 

(43) 

We can also notice that the minimum will exist when 

The results of the analytical solution for radial flow 
under zero gravity is also compared with previous 
numerical results of ref. [lo] in Fig. 2. In this case, we 
can see a minimum inside the flow domain confirming 
the observation from the one-dimensional analytical 
solution using the uniform velocity profile. Both ana- 
lytical solutions are close to each other whereas the 
numerical solution is slightly higher in most parts of 
the flow. 
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4.3. Plane flow in the presence of gravity 
For plane flow where the gravitational body force 

term in retained, the governing equations of motion, 
equations (34) and (35), can be integrated across the 
thickness of the film using equation (38) the bound- 
ary conditions, and the definition of Reynolds 
number. and can be transformed to the equation 

5 ( 1 6 _Fr’ f$. = !?F,I 113 
4 (44) 

where 

R= - 
(v',g,'T1 Re5/3' 

Here the radial coordinate R is normalized in terms 
of Reynolds number. Note that the definition of R is 
very similar to the normalized radius Rl used in the 
one-dimensional analysis using the uniform velocity 
except that the friction coefficient cr appears in Rl 
whereas it does not appear in R. From equation (29) 
the friction coefficient can be easily calculated to be 

6 

“=Re. (46) 

This friction coefficient is correct when the velocity 
profile is parabolic across the thickness of the film, 
which obviously assumes that viscous effects are 
extended all the way to the free surface. When this 
definition of cr is assumed, Rl becomes the same as 
R. In the present investigation we have tried to keep 
the one-dimensional analysis using the uniform vel- 
ocity somewhat more general where any known dis- 
tribution of the friction coefficient may be used. 

From equation (44) it can be noticed that a critical 
condition in the flow occurs at Fr = 0.913. Note that 
this value of Froude number is different from the 
conventional critical Froude number of Fr = 1, which 
is strictly valid for a one-dimensional flat velocity 
distribution. The Froude number of 0.913 is therefore 
the ‘weighted’ value for the parabolic profile. Inte- 
grating equation (44) with a boundary condition of 
R = R* at Fr = 0.9 13 we can obtain the solution as 

-1,195+1~~~2:3_~~~-8:' = 3.75(R- R*). 

(47) 

A plot of this equation is shown in Fig. 5 (as circles). 
Analogous to the one-dimensional analysis, the solu- 
tion is also found here to be double valued in nature. 
The two stems of the curve denote the supercritical 
and subcritical flow regimes. The possibility of a 
hydraulic jump also exists here, which basically 
depends on the incoming Froude number, length of 
the plate and flow condition at the outlet. The jump 
may be present only when the flow initially is super- 
critical. The ratio of the film height before and after 
the jump can be determined from a mass and momen- 

2 1 
FIG. 5. Analytical solution for horizontal flow over a plate 

in the presence of gravity (parabolic velocity). 

turn balance at the jump, which, in this case, turns out 
to be 

6 
‘=![,/(1+9.6Fr:)-1) 
6, 2 

(48) 

where subscript 1 indicates conditions before the jump 
and subscript 2 indicates conditions after the jump. 
In comparing this relationship with equation (24) for 
uniform flow only the coefficient within the radical 
changes for the parabolic profile. 

Plane flow in the presence of gravity is characterized 
by two independent dimensionless groups, namely, 
the Froude number and Reynolds number. Since the 
Reynolds number is lumped with other parameters in 
the definition of R, to see its effects more clearly, 
the plane flow solution is plotted again in Fig. 6 for 
different values of Reynolds number using 
(Z-z*)/(V’/g) “3 as the abscissa. Note that for a small 
Reynolds number, the supercritical solution cannot 
be sustained for a large length of the plate. On the 
other hand, for the same Reynolds number. the sub- 
critical solution may be present for any length of 
the plate. Also, the length for which a supercritical 
solution may be present increases with Reynolds num- 
ber. So, for a given length of the plate and inlet Froude 
number, the length of the supercritical flow regime is 
directly dependent on the Reynolds number. For a 
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FIG. 6. Froude number distribution for plane flow over a 
plate in the presence of gravity. 



FIG. 7. Comparison of predicted film height with a previous 
result for plane flow in the presence of gravity. 

large Reynolds number, the how may be supercritical 
in the entire domain. With a decrease of the Reynolds 
number, a jump is expected to appear with a sub- 
critical regime. As the Reynolds number is reduced 
further, the jump may move all the way to the inlet, 
resulting in completely subcritical flow. 

The figure also shows that if the flow enters the 
control volume with a higher Froude number, it may 
remain supercritical for a larger distance. The effect 
of gravity can be also analyzed. For a given flow rate 
and Froude number, (Z-Z*) is inversely proportional 
to (g)“‘. So, for a smaller value of g, the length of the 
supercritical flow regime is expected to be longer. In 
the limiting case of zero gravity, a subcritical flow 
regime is not possible and the IIow becomes entirely 
supercritical. 

The predicted film height is compared with the pre- 
vious numerical solution of Rahman et al. [IO] for 
Re = 89, Fr,,, = 8.6, Fr,,, = I.0, L = 0.14 m and 
v = 7.4x 10m6 m” s-’ in Fig. 7. The height in the 
supercritical region is slightly over-predicted, whereas 
in the subcritical region, the height becomes flatter 
than the numerical solution. In the nume~cal compu- 
tation of Rahman et al. [lo] a critical outflow con- 
dition is assumed to be present at the exit, whereas in 
the analytical solution this condition was not imposed. 

4.4. Radial$ow in the presence of graz)ity 
For radial flow in the presence of gravity, the equa- 

tions of motion (equations (34>-(36)) can be expressed 
as 

5Frf3Fr3 IS _ .._..~~--- + _~ Fr 1 ‘/ 3 (49) 

where 

R=__ - 
,,2,,4 Re5'3' (501 

Here, we can also notice that a critical condition is 
arrived at Fr = 0.913. This confirms that a critical 
condition in the flow depends on the velocity profile 
used for the analysis. The double-valued nature of the 
solution and the possibility of a hydraulic jump still 
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WC. 8. Heat transfer coefficient for heating with no evap- 
oration adjacent to a constant flux wall. 

exists. The solution is presented in Fig. 5 for different 
values of R*. Analogous to plane flow, the critical 
radius R* corresponds to Fr = 0.913. As discussed 
before, a smaller value of R* indicates that the flow 
starts up at a smaller radius where the effects of cur- 
vature are important. This fact is quite evident in the 
figure. The curve for R* = 100 coincides with the 
plane flow solution. At this situation, the effect of 
curvature is negligible. Also, at R* = OS and 1, the 
Froude number attains a minimum in the subcritical 
regime. This indicates that if a jump happens before 
that radial location, the film height may still increase 
in the subcritical region, attain a maximum and then 
diminish further downstream. This phenomenon is 
not present in plane flow and at flows with large values 
of R*, where the film height decreases monotonically 
in the subcritical region. It can also be noticed that 
equation (49) reduces to equation (44) as R -+ m. So. 
the plane flow may be treated as a limiting case of 
radial Sow where R -+ CC. 

4.5. APtal_ysis of heat transjkr 
The heat transfer behavior can be solved by inte- 

grating equation (37) with the substitution of equa- 
tion (28) for the temperature profile. 

Different thermal boundary conditions are con- 
sidered in the present study. They are isothermal and 
uniform Aux conditions at the solid wall and evap- 
oration and pure heating without evaporation on the 
free surface. The heat transfer coefficient for these 
cases are defined as 

il =2 swi(Tw - Td. for heating 

qw/( T, - T,,,), for evaporation. (51) 

A general expression for the Nusselt number can 
be evaluated from equations (30)-(33) 

_.~. . for heating 

(52) 

I B .-.._ 
B+C’ 

for evaporation. 
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A complete analytical solution is possible for the 

case of heating, when the free surface is assumed to 

be adiabatic in nature. For this case, Nu* = 2.5 for 
both isothermal and uniform flux wall conditions. 

Note that Nu* is a function of the heat transfer 
coefficient and film height, both of which change with 
location on the plate. A comparison of this result with 
the previous numerical solution of ref. [12] is shown 
in Fig. 8. For radial flow at zero gravity (Rein = 404, 
Pr = 7. rin = 0.05 m, rout = 0.2 m, &, = 0.005 m, 
T,, = 2O’C, qw = 1000 W rn-“, v = 7.4x 10m6 m2 
s-‘, k = 0.4 W mm’ K-‘), the numerical Nusselt 

number starts at a higher value and then approaches 
an asymptotic limit as the flow moves downstream. 
This limiting value is somewhat lower than the ana- 
lytical prediction. This indicates that the true tempera- 

ture profile is somewhat flatter than the parabola as- 
sumed here. For plane flow in the presence of gravity 
(Re = 89, Fri, = 8.6, Fr,,, = 1.0, Pr = 7, L = O.l4m, 
T,,=20”C,q,=1000Wm~‘,v=7.4x10~bm’s~’, 
k = 0.4 W m-’ Km ‘), the subcritical and super- 
critical heat transfer coefficients approach the ana- 

lytically predicted value as the flow moves down- 
stream with the development of the temperature 
profile. 

For an isothermally heated wall with evaporation 
on the free surface, an expression for the Nusselt 
number can be derived by integrating equation (37) 
using equation (28) for the temperature profile and 
boundary conditions. The result is 

NU* = l- 
T sat (--I TW 

I 
ev 

where 

(53) 

Here Co is the value of C at one location in the flow, 

where integration should start. 
The expressions for Nu* are true both for the cases 

where the gravity is finite and infinitesimally small. 
The actual heat transfer coefficient, however, will be 
different because of different distributions in the film 
height. 

5. CONCLUSIONS 

A systematic analysis of thin film flows in zero 
gravity and non-zero gravity environments is per- 
formed and their implications in a real flow problem 
under micro-gravity conditions is discussed. The 
analysis is carried out in two parts. First, the hydro- 
dynamics of the flow is studied for uniform one- 
dimensional velocity with any given friction factor. 
Next, the flow field and heat transfer coefficient are 
determined using the Pohlhausen integral method. 

It is found that in the complete absence of gravity. 

the flow is supercritical, where even for a relatively 
small, but not negligible gravity, two potential flow 
regimes-supercritical and subcritical-may be 

present. The two regimes are separated by a jump 
where large changes of film height take place. In the 
presence of friction, both supercritical and subcritical 
flows move towards a critical condition. The flow 
regime is characterized by the Froude number, 
whereas the Reynolds number indicates the relative 
importance of the inertial and viscous effects. 

For plane flow, it is found that in the absence of 

gravity. the film height increases linearly with 
distance. When gravity is present, the film height 

increases monotonically in the supercritical region, 
encounters a jump and then decreases further down- 
stream in the subcritical region. The heat transfer 

coefficient in this situation is characterized by 
Nu* = 2.5, both for isothermal and uniformly heated 
walls with no evaporation from the free surface. 

For radial flow it is found that in addition to the 

Froude and Reynolds numbers, the inlet radius is 
an important parameter. which carries the effects of 

curvature in the flow. At large values of the inlet 
radius, a plane flow situation is approached. Here, in 
the presence of gravity, the film height may increase 
or decrease depending on the flow rate, radial location 
and Froude number. The comparison of the results 
with previous numerical solutions shows reasonably 

good promise that the analytical method presented 
here can act as a useful tool to easily obtain approxi- 
mate results for any given flow situation in a normal 
gravity or microgravity environment. 
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ANALYSE DE L’ECOULEMENT FLUIDE ET DU TRANSFERT DE CHALEUR DANS 
UN MINCE FILM LIQUIDE EN PRESENCE ET EN ABSENCE DE GRAVITE 

R&urn&-Le comportement hydrodynamique et thermique d’un mince film liquide sur une surface hori- 
zontale est analyse pour des tcoulement qui s’etalent de facon plane ou radiale. On analyse separement les 
situations oti la force de pesanteur est completement absente et oti elle est significative et on discute leur 
adaptation au cas d’un environnement de micro-gravite. En presence de pesanteur. outre le nombre de 
Reynolds, le nombre de Froude du film est un parametre important qui determine les regimes supercritique 
et subcritique et un saut hydraulique associe. Une solution analytique est possible pour quelques situations 
d’ecoulement, tandis que d’autres ntcessitent l’integration numirique des equations differentielies. 
Les rtsultats analytiques approches se comparent bien avec les solutions numeriques bidimensionnelles 

disponibler. 

UNTERSUCHUNG VON STRijMUNG UND WARMEUBERGANG IN EINEM DijNNEN 
FLUSSIGKEITSFILM MIT UND OHNE SCHWERKRAFTEINFLUSS 

Zusammenfassung-Das hydrodynamische und thermische Verhalten eines diinnen Fliissigkeitstilms. der 
tiber eine feste waagerechte Oberflache striimt. wird sowohl fur ebene als such fiir sich radial ausbreitende 
Stromung untersucht. Die Bedingungen. unter denen die Schwerkraft ohne jeglichen EinftuD ist. und 
diejenigen. untcr denen diese sich wesentlich auswirkt. werdrn getrennt untersucht. Die praktische 
Bedeutung dieser Vorgange in einer Umgebung unter den ~dinguIlgen der M~krogravitation wird erkiutert. 
Bei vorhandener Schwerkraft zeigt sich. dab die Froude-Zahl des Films neben drr Reynolds-Zahl ein 
wichtiger Parameter ist, der die Bereiche iiberkritischer und unterkritischer Stromung und den damit 
verkniipften Umschlag festlegt. Unter bestimmten Stromungsbedingungen ist eine geschlossene Liisung 
moglich, wogegen andere Fille die numerische Integration der gewiihnlichen Differentialgleichungen 
erfordern. Es zeigt sich. daIJ die analytischen NSherungslGsungen gut mit den verfiigbaren zweidimen- 

sionaien numerischen Liisungen ~bereinstimInen. 

AHAJTH3 TEgEHHR XM,lJKOCTH H TEHJIOl-IEPEHOCA B TOHKOH HJIEHKE 
XH~KOCTA HPH HAJIRYHH H OTCYTCTBMH CIlJ’IbI TIIXECTH 

~T~~~~~eH r~~spo- n TepMo~HaMHq~K~~ aHami3 nmcxoro zf pwanbsoro T~S~HWR 
TOHKOii ILIICHKH XUUVCOCTH Ha TFSpAO~ rOp~OHT~bH0~ nO~pXHOCT~. &AeAbHO p%CMalJ3m%iOTCn 

CuTyaImi, BHOTO~~IXCH~~T~IXC~~TH ii31B nonHo~bIOOTCyTCTByeT,mHCywiecrBeHHa,H o6cy-mnaeTcrsiX 

np;iit~~i~~~~e npmoxeH5ie K CAyYalo IIpHCyTCTBHR MueporpaeHTauHH. HafiAeHo, 'iT0 npa HanHYHIi 

cmb~ TIIECT~ mm0 Qpyna Am nnerlir% nordmo wicna PeiSHonbAca, TaKwe KBKeTcx nambm napa- 

MeTpOM,On~AeJlSlKWiM3a-%iAOKpHTHSeCKHfi PerHMhlTeYeHHRHCBI13ilHHbIiiCHHMU rHApaBmiveCKHii 

CKa'iOK.&lll HeKOTOpbDt CJIy’iaeB TeVeHHR B03MO2KHO pef.IleHSie B 3aMKHyTOfi @Ophfe,AJlS ApyIlfX Heo6- 
XOBliMO WC%%HiOe HHTC~HpOI?tUiliC O6bXKHOBeHNbiX AH~peHWaAbHbIX Y~BHeHWii. ~OJIyWIiO 
XO~~~COrnaCHC ?sSCZWty~~n~~eHH~ aH~~TH~~~HMU pe3yAbTaTaMH Ip ~Me~~~M~C~ AByMep- 


